A new statistic and practical guidelines for nonparametric Granger causality testing
نویسندگان
چکیده
In this paper we introduce a new nonparametric test for Granger non-causality which avoids the over-rejection observed in the frequently used test proposed by Hiemstra and Jones [1994. Testing for linear and nonlinear Granger causality in the stock price-volume relation. Journal of Finance 49, 1639–1664]. After illustrating the problem by showing that rejection probabilities under the null hypothesis may tend to one as the sample size increases, we study the reason behind this phenomenon analytically. It turns out that the Hiemstra–Jones test for the null of Granger non-causality, which can be rephrased in terms of conditional independence of two vectors X and Z given a third vector Y, is sensitive to variations in the conditional distributions of X and Z that may be present under the null. To overcome this problem we replace the global test statistic by an average of local conditional dependence measures. By letting the bandwidth tend to zero at appropriate rates, the variations in the conditional distributions are accounted for automatically. Based on asymptotic theory we formulate practical guidelines for choosing the bandwidth depending on the sample size. We conclude with an application to historical returns and trading volumes of the Standard and Poor’s index which indicates that the evidence for volume Grangercausing returns is weaker than suggested by the Hiemstra–Jones test. r 2006 Elsevier B.V. All rights reserved. JEL classification: C12; C51; E3
منابع مشابه
The Impact of Human Capital on FDI with New Evidence from Bootstrap Panel Granger Causality Analysis
T his study evaluates the causality relationship between human capital and foreign direct investment inflow in twenty-six OIC (the Organization of Islamic Cooperation) countries over the period 1970–2014. We employed the panel Granger non-causality testing approach of Kònya (2006) that is based on seemingly unrelated regression (SUR) systems, and Wald tests with country specific boot...
متن کاملNonparametric Tests for Conditional Independence Using Conditional Distributions∗
The concept of causality is naturally defined in terms of conditional distribution, however almost all the empirical works focus on causality in mean. This paper aim to propose a nonparametric statistic to test the conditional independence and Granger non-causality between two variables conditionally on another one. The test statistic is based on the comparison of conditional distribution funct...
متن کاملA Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality
This paper proposes a new nonparametric test for conditional independence, which is based on the comparison of Bernstein copula densities using the Hellinger distance. The test is easy to implement because it does not involve a weighting function in the test statistic, and it can be applied in general settings since there is no restriction on the dimension of the data. In fact, to apply the tes...
متن کاملGranger Causality and Dynamic Structural Systems
We analyze the relations between Granger (G) non-causality and a notion of structural causality arising naturally from a general nonseparable recursive dynamic structural system. Building on classical notions of G non-causality, we introduce interesting and natural extensions, namely weak G non-causality and retrospective weakG non-causality. We show that structural non-causality and certain (r...
متن کاملCore Inflation and Economic Growth, Does Nonlinearity Matters? A Nonlinear Granger Causality Analysis
T his empirical analysis endeavors to trace out the causal nexus between core inflation and economic growth from the perspective of twenty worlds’ leading economy with the help of the nonlinear Granger causality approach by using time series data from 1981 to 2016. Based on nonlinear Granger causality results, it has been found that there is unidirectional casualty running from core ...
متن کامل